Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Markers ; 2022: 3597200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277980

RESUMO

Objective: To observe the clinical effectiveness of noninvasive positive pressure ventilation in patients with respiratory failure complicated by diabetes. Methods: From May 2021 to May 2022, 90 patients with respiratory failure complicated by diabetes treated in our hospital were recruited and randomly assigned to receive either medication (control group) or noninvasive positive pressure ventilation (study group), with 45 patients in each group. The clinical endpoint was therapeutic outcomes. Results: Noninvasive positive pressure ventilation resulted in significantly lower Self-Rating Anxiety Scale (SAS) and Self-Rating Depression Scale (SDS) scores versus medications (P < 0.05). Patients with noninvasive positive pressure ventilation showed better pulmonary function indices versus those with medications (P > 0.05). There was no significant difference in arterial oxygen (PaO2), carbon dioxide partial pressure (PaCO2), and arterial oxygen pressure/inspired fraction of O2 (PaO2/FiO2) between the two groups prior to the intervention (P > 0.05). However, patients in the study group had significantly elevated PaO2 and PaO2/FiO2 and lower PaCO2 levels than those in the control group (P < 0.05). Following the intervention, noninvasive positive pressure ventilation resulted in significantly lower inflammatory factor levels versus medications (P > 0.05). After the intervention, markedly better glucose control was observed in the study group versus the control group (P < 0.05). The incidence of complications in the control group was 2.38%, which was significantly lower than that of the control group (16.67) (P < 0.05). Conclusion: Noninvasive positive pressure ventilation effectively suppresses the inflammatory response, improves the blood gas analysis index, and eliminates the negative emotions of patients, thereby maintaining hemodynamic stability and improving clinical efficacy with a better safety profile. Further studies are recommended prior to clinical promotion.


Assuntos
Diabetes Mellitus , Respiração com Pressão Positiva , Insuficiência Respiratória , Humanos , Glicemia , Dióxido de Carbono , Oxigênio/administração & dosagem , Insuficiência Respiratória/terapia , Resultado do Tratamento
2.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(3): 280-288, 2022 Mar 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-35545320

RESUMO

OBJECTIVES: Chlorogenic acid has various physiological activities such as antibacterial, anti-inflammatory, and antiviral activities. Studies have shown that chlorogenic acid can alleviate the inflammatory response of mice with acute lung injury (ALI), but the specific mechanism is still unclear. This study aims to investigate whether chlorogenic acid attenuates lipopolysaccharide (LPS)-induced ALI in mice by regulating the microRNA-223 (miR-223)/nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) axis. METHODS: SPF grade BALBc male mice were randomly divided into a control group, a model group, a chlorogenic acid group, a chlorogenic acid+miR-223 negative control (miR-223 NC) group, and a chlorogenic acid+miR-223 inhibitor (miR-223 antagomir) group, 10 mice in each group. Except the control group, the other groups were instilled with 4 mg/kg LPS through the airway to establish the ALI mouse model. After the modeling, the mice in the chlorogenic acid group were continuously given chlorogenic acid (100 mg/kg) by gavage for 7 d. The chlorogenic acid+miR-223 NC group and the chlorogenic acid+miR-223 antagomir group were given 100 mg/kg chlorogenic acid by gavage every day, and then were injected with 10 µL of miR-223 NC (0.5 nmol/µL) and miR-223 antagomir (0.5 nmol/µL) respectively for 7 consecutive days.The control group and the model group were replaced with normal saline. The lung tissues of mice were taken to measure the ratios of lung wet to dry weight (W/D). The bronchoalveolar lavage fluid of mice was collected to measure the levels of TNF-α, IL-6, and IL-1ß by ELISA kit and to count the number of eosinophils (EOS), lymphocytes, neutrophils under light microscope. After HE staining, the pathological changes of lung tissues were observed and lung injury was scored. qRT-PCR method were used to determine the expression levels of miR-223 in lung tissues. Western blotting was used to determine the expression levels of NLRP3 protein in mouse lung tissues. Luciferase reporter assay was used to analyze the targeting relationship of miR-223 to NLRP3. RESULTS: Compared with the control group, the lung W/D value, the lung injury score and the level of inflammatory factors in the bronchoalveolar lavage fluid were significantly increased in the model group (all P<0.05); the infiltration of inflammatory cells in the lung tissue was severe; the alveolar space was significantly increased; the alveolar wall was significantly thickened; the number of EOS, lymphocytes, and neutrophils in the bronchoalveolar lavage fluid was significantly increased (all P<0.05); the expression levels of miR-223 in lung tissue were significantly decreased (P<0.05); and the protein expression levels of NLRP3 were significantly increased (P<0.05). Compared with the model group, the W/D value of lungs, lung injury score, and levels of inflammatory factors in bronchoalveolar lavage fluid were significantly decreased in the chlorogenic acid group, the chlorogenic acid+miR-223 NC group, and the chlorogenic acid+miR-223 antagomir group (all P<0.05); lung tissues damage was alleviated; the numbers of EOS, lymphocytes, and neutrophils in bronchoalveolar lavage fluid were significantly decreased (all P<0.05); the expression levels of miR-223 in lung tissues were significantly increased (P<0.05); and the expression levels of NLRP3 protein were significantly decreased (P<0.05). Compared with the chlorogenic acid group, the lung W/D value, lung injury score, and inflammatory factor levels in the bronchoalveolar lavage fluid were significantly increased in the chlorogenic acid+miR-223 antagomir group (all P<0.05); lung tissue damage was aggravated; the number of EOS, lymphocytes and neutrophils in bronchoalveolar lavage fluid significantly increased (all P<0.05); the expression levels of miR-223 in lung tissues were significantly decreased (P<0.05); and the expression levels of NLRP3 protein were significantly increased (P<0.05). The results of luciferase reporter assay showed that miR-223 had a targeting relationship with NLRP3. CONCLUSIONS: Chlorogenic acid may increase the level of miR-223, target the inhibition of NLRP3 expression, reduce LPS-induced inflammatory response in ALI mice, and alleviate pathological damage of lung tissues.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Animais , Antagomirs/metabolismo , Líquido da Lavagem Broncoalveolar , Ácido Clorogênico/efeitos adversos , Ácido Clorogênico/metabolismo , Lipopolissacarídeos/efeitos adversos , Pulmão/patologia , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
3.
Acta Pharmacol Sin ; 34(12): 1568-74, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24241343

RESUMO

AIM: (±)Doxazosin is a long-lasting inhibitor of α1-adrenoceptors that is widely used to treat benign prostatic hyperplasia and lower urinary tract symptoms. In this study we investigated the stereoselective binding of doxazosin enantiomers to the plasma proteins of rats, dogs and humans in vitro. METHODS: Human, dog and rat plasma were prepared. Equilibrium dialysis was used to determine the plasma protein binding of each enantiomer in vitro. Chiral HPLC with fluorescence detection was used to measure the drug concentrations on each side of the dialysis membrane bag. RESULTS: Both the enantiomers were highly bound to the plasma proteins of rats, dogs and humans [(-)doxazosin: 89.4%-94.3%; (+)doxazosin: 90.9%-95.4%]. (+)Doxazosin exhibited significantly higher protein binding capacities than (-)doxazosin in all the three species, and the difference in the bound concentration (Cb) between the two enantiomers was enhanced as their concentrations were increased. Although the percentage of the plasma protein binding in the dog plasma was significantly lower than that in the human plasma at 400 and 800 ng/mL, the corrected percentage of plasma protein binding was dog>human>rat. CONCLUSION: (-)Doxazosin and (+)doxazosin show stereoselective plasma protein binding with a significant species difference among rats, dogs and humans.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/metabolismo , Proteínas Sanguíneas/metabolismo , Doxazossina/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 1/química , Animais , Cães , Doxazossina/química , Humanos , Técnicas In Vitro , Ligação Proteica , Ratos , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...